
The Role of Hydrogen Sulfide in
Evolution and the Evolution of Hydrogen
Sulfide in Metabolism and Signaling

The chemical versatility of sulfur and its abundance in the prebiotic Earth as

reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion

years ago and also as a major source of energy in the first seven-eighths of

evolution. The tremendous increase in ambient oxygen �600 million years

ago brought an end to H2S as an energy source, and H2S-dependent animals

either became extinct, retreated to isolated sulfide niches, or adapted. The

first 3 billion years of molecular tinkering were not lost, however, and much of

this biochemical armamentarium easily adapted to an oxic environment where

it contributes to metabolism and signaling even in humans. This review ex-

amines the role of H2S in evolution and the evolution of H2S metabolism and

signaling.
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The simplest definition of life is the ability to utilize
and control energy. Today, nearly all of life’s en-
ergy is derived from the sun. Plants oxidize water
to oxygen and reduce inorganic carbon, whereas
animals derive energy by reversing this process.
Photosynthesis was not an innate property when
life originated, and a number of scenarios have
been proposed to provide energy and/or energized
organic molecules. Hydrogen sulfide (H2S) is men-
tioned in most scenarios, but generally as a minor
contributor. In this review, we will present argu-
ments suggesting that H2S had a far greater role in
the origin of life and primordial metabolism than
previously thought. Remnants of these activities
persist in modern animals, not as a primary energy
source, but as an important regulator or modulator
of metabolism and signaling.

Sulfur and Sulfide Chemistry

Sulfur is the 10th most common element in the
universe, the 15th most common in the Earth’s
crust, and the 7th most common element in ani-
mals (53). This biological concentration is indica-
tive of sulfur’s considerable utility and versatility in
living systems. Sulfur has eight formal oxidation
states, �2 to �6, with even integers being the most
stable. H2S (�2), the most reduced, is a weak acid;
H2S ↔ HS� � H� ↔ S2� � H�, where pKa1 is 6.9
and pKa2 is between 12 and 17 (119). At pH 7.0,
dissolved H2S � HS�, whereas S2� is often consid-
ered to be essentially negligible, the latter a mis-
take that ignores the fact that, in an equilibrium,
S2� can theoretically be generated until all sulfide
(H2S, HS�, and S2�) is consumed (75). In cells, the

HS�-to-H2S ratio can change from 12.6 in the mi-
tochondrial matrix (pH 8.0) to 0.006 in acidic lyso-
somes (pH 4.7). Dissolved H2S is lipophilic and
readily diffuses through membranes (88), essen-
tially creating pH-dependent equilibria on both
sides of these barriers; however, ionized species are
more chemically reactive. The temperature depen-
dency of the pKa1 can be described by the equation
pKa � 3.122 � 1,132/T, where T � degrees Kelvin
(119). When life began, it is likely that the percent
H2S, HS�, and S2� in the deep open ocean (�2°C, pH
6.5) would have been 66, 33, �0%; compared with 56,
43, �0% in effluent from hot (400°C) acidic (pH 4.5)
thermal vents (black smokers) or 4, 94, 1% in cooler
(70°C) alkaline (pH 9.5) white smoker thermal vents.
Dissolved H2S is also volatile, reflected by its 5-min
half-time in open tissue culture wells, 3 min in aer-
ated myographs, and �1 min in Langendorff per-
fused heart preparations (24). Nevertheless, its
downstream biological effects can persist for hours.
Perhaps the greatest single obstacle in the field of
H2S biology is the accurate measurement of intracel-
lular H2S (77, 121).

A one-electron oxidation of two sulfides or a
two-electron oxidation of one of the two sulfides
forms the simple persulfide, H2S2. Additional oxi-
dative steps form progressively longer polysulfide
chains, up to S8, at which point the sulfur chain is
presumed to cyclize and become insoluble (169),
although this is not always the case (see below).
Polysulfides can act as either a reductant or an
oxidant, a point considered in greater detail later.
pKa1 and pKa2 for H2Sn rapidly decreases as n
increases (60), potentially increasing reactivity.
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A Brief History of the Earth

The earth was formed �4.6 billion years ago (bya),
and it is defined by four eons. The Hadean Eon,
named after Hades, was inhospitable, excessively
hot, and anoxic. If life began here, it would have
been destroyed by extraterrestrial impacts of un-
imaginable magnitude and frequency, but these
would have also brought life’s essentials, water, an
atmosphere, and organic molecules (156). Life be-
gan early in the Archean eon (3.8 bya; FIGURE 1) in
a warm and ferrungous (anoxic and Fe2� domi-
nated) ocean (138, 149). The Proterozoic eon began
2.5 bya. Oxygen appeared in the atmosphere �2.3
bya, the “great oxidation event” (GOE) in which
atmospheric oxygen may have increased several
times to �2% while the oceans remained essen-
tially anoxic. Evolution of modern-day plants,
some 600 million years ago (mya), ushered in the
Phanerozoic eon and the tremendous biomass that
could only be supported by solar energy and an
abundance of atmospheric oxygen.

Origin of Life

Theories of life’s origin follow two main themes:
Where did the first organic molecules come from
and how was energy harnessed to drive metabo-
lism? Stanley Miller was the first to suggest that
lightning could have provided the energy to create
the “primordial soup” (98). Other sources of or-
ganic molecules include high-energy nuclear reac-
tions in far-off stars then delivered in comets,
meteors, or cosmic dust (127, 130, 131), and photo-
catalyzed reactions in the atmosphere (147). H2S is
present in all of these possibilities, even in recently
discovered samples from Miller’s original experi-
ments (126, 127). While all of these theories pro-
vide organic precursors, they cannot consistently
deliver useful energy, and dispersion of the initial
products in the ocean or atmosphere limits the
probability of coupled, sequential chemical reac-
tions. Thus recent attention has turned to hydro-
thermal vents. In fact, the prebiotic earth has been
likened by some to a prototypical cell where energy
in the form of reducing equivalents traverses these
vents as chemiosmotic gradients do across a cell
membrane (89, 136).

Hydrothermal vents are created along the sepa-
ration lines of tectonic plates, e.g., the mid-ocean
ridge-spreading centers. There are two general
types, black and white smokers, so named for the
color of the vent effluent. Black smokers are close
to the spreading centers where magma heats sea-
water that has seeped into the crust and they emit
hot (300-400°C), acidic (pH 2–3) seawater rich in
CO2 (4 –215 mm/kg), H2S (3–110 mmol/kg), dis-
solved H2 (0.1–50 mmol/kg), and reduced transi-

tion metals, especially iron (Fe2�). Iron and sulfide
react in the vent fluid to form FeS, which is then
precipitated when it contacts oxygenated seawa-
ter, thereby forming the characteristic black par-
ticulate plume (64, 82, 144). The combination of
high pressure and heat can drive reactions not
kinetically possible under other conditions, and
when both temperature and pressure decrease as
these fluids rise from near the magma toward the
seafloor, the stability of more thermally labile
products is favored. Heat deep within the smok-
ers keeps metal sulfides in solution, and acidity
favors their dissociation and elevates H2S con-
centrations (51). In the prebiotic earth, it is quite
likely that H2S and reduced metal sulfides re-
mained in solution in anoxic seawater for pro-
longed periods and could have spread
considerable distances (35). Present-day vents
contain the densest biomass on earth, evidence of
their abundant energy and the ability of living or-
ganisms to use that energy.

The recently discovered white smokers are typ-
ically found lateral to the mid-ocean Ridge (off-
axis vents) and are alkaline (pH 9 –11) and cooler
(70 –90°C), as magmatic heating is considerably
reduced (82, 150). They have high concentrations
of H2 (�1–12 mM) and CH4 (1–2 mM), but little
CO2 or H2S. White smokers sit on or near the
magnesium- and iron-rich mineral olivine,
which, when in contact with seawater, creates an
exothermic reaction ultimately generating H2

through a process known as serpentinization
(145). The heat generated by this process also
drives a hydrothermal circulation (145). Much
recent work has focused on this process as pro-
viding the energy and the chemistry for the ori-
gin of life in the form of reducing equivalents
(H2) that can then form methane from CO2 and
by creating a chemio-osmotic gradient between
alkaline the vent fluid and circumneutral (pH
6.5) seawater (10, 23, 48, 82, 83, 85– 87, 89, 113–
115, 142, 143, 145, 146, 150, 157, 173, 180). Par-
adoxically, white smokers support relatively little
biomass or diversity (145).

Some vents are more unique and provide evi-
dence for H2S in life’s origins. These vents are
found on or near tremendous deposits of metal
sulfides, often called sulfide lenses (152, 153). They
are relatively hot (200 –370°C) because they are
heated by both magmatic flow and serpentiniza-
tion, acidic (pH 3– 4), and with high concentrations
of H2S (0.5–2 mM), H2 (10 –25 mM), and CH4 (0.5–
2.5 mM). It is our opinion that these events offer
the greatest opportunity for life due to the versa-
tility of sulfide and the many energetic transforma-
tions that can occur.
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The Multifunctional Role of H2S at
Life’s Origin

H2S was arguably the most versatile molecule
when life began because it could serve as an im-
portant organic product, reactant, catalyst (proto-
enzyme), barrier (proto-membrane), and
sustainable source of energy. In the “iron-sulfur
world” (172), oxidation of HS� by FeS, both prod-
ucts of hydrothermal vents, produces a variety of
organic molecules (reviewed in Ref. 16) as well as
reducing N2 or nitrate to ammonia and generating
amines (9, 27, 63, 116, 162). Sulfide reacts with
Fe2� and other transition metal ions, and many of
these can serve as unique and gateway catalysts
(22, 43, 104, 112, 116, 137). For example, sphalerite
(ZnS) is a highly specific catalyst for activation of
single carbon-hydrogen bonds (155). Sulfide and
iron combinations form minerals such as pyrite
(FeS2), greigite Fe3S4 (138, 140), and iron sulfur
clusters such as Fe2S2 and Fe4S4, all of which can-
not only act as catalysts but potentially act as phys-
ical barriers forming prototypical membranes (89,
92, 93). Iron sulfur clusters are also found in a
variety of enzymes and act as chemical “wires” to
conduct electrons; 12 are found in mitochondria.
Transition metals also react with sulfur to form
metal polysulfides, which increases sulfur’s reac-
tivity and versatility.

A number of factors support H2S over H2 as the
primordial energy source. First, there is typically
more H2S than H2 exhausted from vents. Second,
transition metal sulfides (e.g., FeS) can potentially
release more H2S per volume from sulfide lenses
(55,000 mol/m3) than H2 can be generated from
olivine (500 mol/m3 olivine; Ref. 82). Third, oxida-
tion of H2S produces more energy than H2 oxida-
tion

H2S � 4H2O → H2SO4 � 4H2 : �662.7kJ ⁄ mol
(1)

vs.

4H2 � CO2 → CH4 � 2H2O : �343.8 kJ ⁄ mol (2)

or

H2S � 2H2O � CO2 → H2SO4 � CH4 :

�318.9 kJ ⁄ mol (3)

Fourth, H2S oxidation generates additional equiv-
alents of H2 (Eq. 1). And fifth, complete oxidation
of H2S to H2SO4 releases eight electrons, enough to
completely reduce carbon to methane compared
with two electrons released by H2 oxidation.

H2S and Photosynthesis

The ability to extract energy from a photon and use
it to form or break chemical bonds freed organisms

from their chemolithotrophic existence and their
dependency on reducing equivalents supplied
from within the Earth to drive cellular redox chem-
istry. This likely occurred relatively soon after the
origin of life �3–3.5 bya (49, 149, 156). The initial
type-I photosynthetic pathways were sequential
two-electron transfer processes mediated by solu-
ble cytochromes and were anoxygenic. Their light-
gathering antennae absorbed longer wavelength
light and, because water is a weak electron donor,
reduced compounds, such as H2S, H2, Fe2�, or-
ganic carbon, and nitrate, have been suggested as
possible electron sources (139). H2S would not only
be a likely candidate because of its abundance, but
the molecular similarity to water would be a con-
venient “lead-in” to more sophisticated high-en-
ergy type-II photosynthesis that followed. Relics of
H2S-mediated photosynthesis are present in mod-
ern-day anerobic photosynthetic purple and green
sulfur bacteria as

CO2 � H2S � hv → �CH2O�n � H2O � S�n� (4)

where S(n) denotes polysulfides or elemental sulfur
that is formed and packed into globules that are
either excreted or retained within the cell. The
latter may still be important as a means of sulfide
storage, trafficking, and signaling as discussed in
the last section. Perhaps bespeaking to their primal
origins, some extant green anoxygenic photosyn-
thetic bacteria have light-gathering antennae,
chlorosomes, tuned to the low-energy infrared ra-
diation emitted from hydrothermal vents (7). As in
mitochondria, Fe2S2 clusters also assist in electron
transfer in chloroplasts (123).

Oxygenic photosynthesis, a four electron oxida-
tion of two water molecules, first appeared in cy-
anobacteria probably several hundred million
years after anoxygenic photosynthesis. This “great
oxidation event” (GOE) may have periodically in-
creased atmospheric oxygen to �2% (PO2 of �15
Torr) of present atmospheric levels (pal) �2.3 bya
(19, 28, 50, 149). However, the oceans remained
largely anoxic, and recent studies suggest that at-
mospheric oxygen levels were considerably lower
than previously suggested, at most 0.1% of pal (PO2

of �2 Torr) even from 1.8 to 0.8 bya (132). Because
the light-gathering antennae of primitive anoxy-
genic chlorophyll (bacteriochlorophyll) could not
collect sufficient energy to oxidize water, it has
been proposed that other intermediates such as
hydroxyl amine, hydrogen peroxide, hydrazine, ni-
tric oxide, nitrite, or HCO3 were the “transitional”
electron donors leading up to oxygenic processes
(49). Raymond and Blankenship (139) suggest that
hydrogen peroxide was the most likely intermedi-
ate and propose that binuclear manganese catalase
ultimately became the tetranuclear manganese on
the oxygen evolving complex (OEC) of chlorophyll.
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We propose that H2S or hydrogen persulfide (H2S2)
would be better “transitional” electron donors
than peroxide. The oxidation potential for H2S ¡
S0 � 2H� � 2e� is �0.14 E0(V), far less than that of
water to peroxide; 2H2O ¡ H2O2 � 2H� � 2e�

[�1.78 E0(V)] or peroxide to oxygen H2O2 ¡ O2 �

2H� � 2e� [�0.68 E0(V)]. There was also consid-
erably more H2S in the environment than H2O2.
Using H2S would also provide a logical transition
where H2S2 derived from two-electron oxidation of
H2S in anoxygenic photosynthesis could be utilized
in a second reaction with H2S, e.g.

H2S � hv → 2H� � 2e� � S0, then; S0

� H2S → H2S2 (5)

forming progressively longer chain polysulfides. In
addition, H2S could easily have been the anteced-
ent four-electron donor paving the way for its co-
gener, water

2H2S � hv → 4H� � 4e� � S2 (6)

Sulfide and the Origin of
Mitochondria

The slight increase in atmospheric oxygen during
the GOE oxidized terrestrial sulfur to sulfate, which
was then washed to the sea. Here, the omnipresent
Fe2�, along with the appearance of a few sulfate-
reducing organisms (65), reduced sulfate to H2S,
and large areas of ocean became euxinic (anoxic
and sulfidic). Eukaryotes first appeared in this en-
vironment. The following paragraphs describe the
evolution of organisms and metabolic mechanisms
that oxidize sulfide; organisms that reduce sulfite
and sulfate back to sulfide are considered else-
where (5, 6).

Eukaryotes require mitochondria to transform
oxygen reduction into useful energy. It is most
often accepted that mitochondria are derived from
a single endosymbionic event �1.5 bya in which
their precursor, an �-proteobacteria akin to Rick-
ettsia, was engulfed by a host Archea (21, 28, 81,
165, 178). A novel monophyletic archael phylum
“Lokiarchaeota” with genes coding numerous eu-
karyotic signature proteins is a likely ancestral host
(158). Not surprisingly, Lokiarchaeota were found
in sediment near the black smoker hydrothermal
vent, Loki’s Castle (158). A number of advantages
have been attributed to such a union. For instance,
the “Ox-Tox” model suggests this union prevents
oxygen toxicity (72), although an intracellular or-
ganelle is not ideally suited to protect the cytosol
from extracellular insult. The “hydrogen” hypoth-
esis suggests this as a mechanism of hydrogen
transfer (84), although loss of hydrogen from the
atmosphere could be problematic. On the other
hand, “sulfide syntrophy” (151) suggests a mecha-

nism of sulfur cycling. This is intriguing since it
incorporates features of a sulfide-reducing host
with the sulfide-oxidizing endosymbiont, an ad-
vantageous union in the euxinic ocean where sul-
fide could provide energy. Sulfur syntrophy is also
consistent with sulfur cycling in modern-day eu-
karyotes (see below), and it reflects the primordial
lineage of sulfide-metabolizing enzymes, including
some organisms with anaerobic mitochondria (91).

The first three steps in H2S metabolism in hu-
mans and some bacteria are identical, suggesting a
long phylogenic relationship (90). Indeed, the en-
zyme sulfur quinone oxidoreductase (SQR), the
first step in H2S metabolism (see below), not only
appears to have been present in the original mito-
chondrial endosymbiont (167), it is physically em-
bedded in the eukaryotic electron transport chain
of extant animals (47). Because many elements of
the mammalian electron transport chain as well as
SQR predate the emergence of cyanobacteria, and
therefore predate oxigenic photosynthesis (12, 13,
39), it seems reasonable to conclude that these
systems initially served another energetic pathway,
and H2S oxidation would be the most logical
candidate.

The Advent of Environmental
Oxygen, Demise of Free Sulfide,
and Origin of Modern-Day Animals

Subsequent endosymbiotic events in which eu-
karyotic cells incorporated cyanobacteria gave rise
to modern plants at the beginning of the Phanero-
zoic (FIGURE 1), �800 mya (4, 34, 50, 61, 62, 71, 79,
138, 149, 179). The combined activity of cyanobac-
teria and plants tremendously increased oxygen
production, but the oxygen was quickly “mopped
up” by the vast amounts of reduced iron and sul-
fide. This probably took another several hundred
million years, but, when finished, the oceans were
oxidized, atmospheric oxygen rose to present-day
values, and sulfide was effectively eliminated as an
energy source. It is generally thought that the rise
in oxygen posed a new threat to life, i.e., organisms
either developed antioxidant mechanisms to deal
with oxygen’s toxic effects, retreated to anoxic en-
vironments, or became extinct. However, we pro-
pose an alternative explanation. Because
antioxidant mechanisms were already in place to
deal with reactive sulfide species (RSS), they
needed to be only slightly tuned to deal with reac-
tive oxygen species (ROS). This allowed animals
access to the practically unlimited supply of re-
duced carbon compounds now provided by plants
and to the most potent and abundant electron
acceptor, oxygen. The result was a massive explo-
sion in Earth’s biomass and complexity.
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Sulfide Metabolism in Modern-Day
Metazoans

For all practical purposes, the rise in oxygen 600
mya divided eukaryotes into two groups, pho-
totrophs and chemotrophs, the former producing
oxygen and reducing inorganic compounds,
mainly those of carbon, and the latter, basically
consumers, completely dependent on the former’s
activities. Assimilation and reduction of oxidized
sulfur (mainly sulfate and sulfite) by micro-organ-
isms and plants can be found in recent reviews (31,
49, 141) and will not be considered here. Metazo-
ans in general, and vertebrates in particular, which
will be considered in detail, typically cannot re-
duce sulfur compounds more oxidized than S(�2).
Thus animals must rely on plants and prokaryotes
for these compounds, nearly all of which are incor-
porated as completely reduced S(�2) sulfur amino
acids (S-AA), methionine (the only essential S-AA),
and cysteine. For instance, most of the human
sulfur intake in Western societies is used for syn-
thesis. The average intake of S-AA is 26 mmol/day,
and S-AA from protein turnover adds another 70

mmol/day, �90% (88 mmol/day) of which is used
for protein synthesis (53, 54). Although gut flora
produces considerable H2S, up to 40 	M in the
colon, it is effectively oxidized by the epithelium
and is not an appreciable source of reduced sulfur
(29, 78). The general features of sulfide synthesis
and metabolism are shown in FIGURE 2.

H2S Production

H2S can be generated via a number of mechanisms
from l-homocysteine and l-cysteine via the methi-
onine transsulfuration pathway or from dietary
cysteine (15, 58, 160). H2S can also be formed by
reduction of sulfur in persulfides, a process well
characterized in protozoans but only recently re-
ceiving attention in vertebrates (discussed below).
Two enzymes, cystathionine 
-synthase (CBS) and
cystathionine �-lyase (CSE aka CGL), are found in
the cytosol, and the tandem of cysteine amino-
transferase (CAT) and 3-mercaptopyruvate sul-
furtransferase (3-MST) are found in the cytosol and
in the mitochondrial matrix (59, 94, 107). There are
also differences in enzyme distribution, CBS pre-
dominates in neural and CSE in cardiovascular

FIGURE 1. Time line of evolution relative to atmospheric oxygen (O2, blue line) and oceanic
H2S (orange line)
Other than possibly a few “whiffs,” atmospheric O2 was essentially nil from the onset of life �3.8 billion years
ago (bya) until the great oxidation event (GOE) 2.3 bya, the latter correlating with a substantial rise in H2S.
Eukaryotes first appeared 1.5 bya in anoxic and sufidic (euxinic) oceans and developed for hundreds of mil-
lions of years until O2 production by oxygenic cyanobacteria and plants oxidized the H2S and Fe2� �0.6 bya,
essentially eliminating sulfide as an energy source. Mass extinctions (*) were often associated with a fall in
ambient O2 and increase in H2S, perhaps providing a biological filter for descendants that retained some de-
gree of tolerance to hypoxia and sulfide.
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tissues. D-Amino oxidase in brain and kidney per-
oxisomes may also produce 3-mercaptopyruvate
(3-MP) from D-cysteine for delivery to mitochon-
dria (154). A number of studies have shown that
H2S-producing enzymes are regulated by various
factors such as calcium (CSE and CAT; Refs. 95, 96),
S-adenosylmethionine (CBS; Ref. 159), and possi-
bly carbon monoxide (CO) or nitric oxide (NO;
although see Ref. 3). Exposed cysteine residues on
3-MST are redox sensitive, and the enzyme is in-
hibited by oxidative stress (100, 109). Most notable,
and alluding to the primordial origin of mitochon-
dria in H2S metabolism, various types of stress,
including hypoxia, translocate CSE from the cyto-
sol to the mitochondria, whereas CBS, which is
normally translocated to the mitochondrion for
degradation, is no longer catabolized during hyp-
oxia, thus increasing mitochondrial CBS. Both re-
sponses, as well as abundant CAT and 3-MST, can
synthesize H2S by taking advantage of the three-
fold greater cysteine concentration in the mito-
chondrial matrix compared with the cytosol (32,
166).

However, under normal circumstances, the
overall flux of sulfur into the transsulfuration path-
way, and hence H2S production, may be relatively
constant. In the presence of oxygen, cysteine di-
oxygenase (CDO) irreversibly oxidizes cysteine to
cysteinesulfinate (and ultimately to hypotaurine or
sulfite/sulfate), thereby decreasing S-AA flux
through the transsulfuration pathways. CDO activ-
ity and expression can increase some 450-fold in
response to increased dietary cysteine. Thus as
little as 35% of cysteine sulfur is oxidized by CDO
in low-cysteine diets, whereas this can increase to
97% when cysteine is in great excess. In this capac-
ity, CDO may serve as a biological “safety valve”
setting fairly tight limits on H2S production (161).

H2S Catabolism

Of the three transmitters, CO, NO, and H2S, only
the latter is enzymatically inactivated. Che-
motrophic and phototrophic microorganisms can
oxidize sulfide via a number of different pathways,
including sulfur quinone oxidoreductase (SQR),
flavocytochrome c sulfide dehydrogenase (Fcc),
and the sulfur oxidizing (SOX) pathway, and this
can be accomplished aerobically or anaerobically,
the latter using nitrate as the electron acceptor (40,
134, 148)

HS� � 1.6NO3� � 0.6H� → SO42� � 0.8N2

� 0.8H2O (7)

H2S can also simply diffuse out of cells, but most
evidence suggests that, in eukaryotes, H2S is inac-
tivated in mitochondria (118). Vertebrates have
SQR but neither Fcc nor SOX pathways. Although it

is often stated that only prokaryotes use reduced
sulfur as electron donors for respiration (148), this
is clearly not the case, and a variety of metazoans
including invertebrates, fish, birds, and mammals
can generate ATP from mitochondrial sulfide oxi-
dation (2, 25, 26, 36, 128, 135, 171, 177).

Vertebrates and invertebrates share common
pathways for oxidizing H2S, although there are still
some uncertainties, even in mammals (8, 36, 46,
47, 56, 73, 80, 90, 167). There is general agreement
that in the initial step H2S binds to the SQR enzyme
and is oxidized to sulfane sulfur (S) forming per-
sulfide (SQRS-S). This also transfers two electrons
via FAD into the quinone pool. These electrons are
carried via the electron transport chain to complex
III and IV, and the chemiosmotic gradient derived
from this drives ATP synthesis. There are differing
thoughts on the disposition of the SQR-sulfane
sulfur. The Jorns group (56, 90) proposed that sul-
fane sulfur is first transferred to sulfite (S2O3

2�)
forming thiosulfite (S2O3

2�; FIGURE 2, reaction 1)
and then to glutathione (GSH) forming glutathione
persulfide (GSSH). Thiosulfate:glutathione sulfur
transferase (TST) supposedly catalyzes the latter
step. Although TST has not been identified in
mammals, its gene (TSTD1, thiosulfate sulfurtrans-
ferase rhodanase-like domain containing 1), ho-
mologous to its yeast ortholog RDL1, recently has
been identified. TST is not a rhodanase. The mito-
chondrial sulfur dioxygenase (SDO, aka ETHE1)
then oxidizes sulfane sulfur of GSSH to sulfite,
consuming O2 and H2O in the process. Sulfite can
be further oxidized by sulfite oxidase (SO) to sul-
fate (S2O4

2�), resulting in liberation of 2H� and
2e�, the latter transferred to cytochrome c (57) also
contributing to ATP production. Alternatively, sul-
fite can be metabolized by SQR with an additional
H2S to form thiosulfate. Based on kinetic analysis,
Libiad et al. (76) proposed an alternative pathway
where GSH receives the SQR sulfane sulfur, form-
ing GSSH (FIGURE 2, reaction 2). GSSH is then
oxidized by SDO (ETHE1) to S2O3

2�, and the GSH
recovered. SO3

2� then can be oxidized to S2O4
2�

by SO, or rhodanase (Rhd) can catalyze sulfur
transfer from GSSH, producing S2O3

2�. H2S can
also be recovered from S2O3

2� by endogenous re-
ductants dihydrolipoic acid (DHLA) or thioredoxin
(Trx; reaction 3; Refs. 94, 120).

In addition to directly stimulating ATP produc-
tion by donating reducing equivalents to the elec-
tron transport chain, H2S inhibits mitochondrial
phosphodiesterase 2A, and the resultant increase
in cAMP will further stimulate electron transport
(103). ATP production from H2S has been pro-
posed to balance Krebs cycle-derived electron
donors and, by enhancing mitochondrial bioener-
getics, helps protect against a variety of stressors
(reviewed in Refs. 101, 163). The advent of mito-
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chondrial-targeted H2S-releasing drugs (164)
should permit considerable insight into this field.

H2S Toxicity

The hormetic effect of H2S is well known; at low
concentrations H2S stimulates O2 uptake and ATP
production, whereas these reactions are inhibited
at higher H2S concentrations through H2S inhibi-
ton of cytochrome c-oxidase (COX). Purified COX is
reversibly inhibited by as little as 0.2 	M H2S,
whereas progressively higher concentrations (up to
20 – 40 	M) are needed to inhibit oxygen consump-
tion by mitochondria and intact cells (1, 8, 17, 102,

129). Thiosulfate is often the excretory product of
organisms inhabiting sulfidic and hypoxic environ-
ments, since excretion of two sulfur atoms requires
only three oxygen atoms, whereas sulfate is nor-
mally excreted by animals in normoxic environ-
ments (20, 26, 41). SQR activity is generally
correlated with increased resistance to H2S toxic-
ity, and it is increased to offset an increased H2S
load; sulfate-synthesizing enzymes are concomi-
tantly decreased as O2 availability decreases (33,
42, 44, 55, 74, 97). In acute hypoxia, H2S may be
detoxified by reversing electron flow and reducing
fumarate to succinate (36, 41). This has been pro-

FIGURE 2. Pathways for H2S production and catabolism in vertebrates
H2S synthesis: in the cytosolic transsulfuration pathway, homocysteine generated from methionine can directly, or in
combination with L-cysteine, produce H2S catalyzed by cystathionine 
-synthase (CBS) and cystathionine �-lyase (CSE).
H2S can also be produced directly from dietary cysteine. Cysteine dioxygenase (CDO) maintains intracellular cysteine
concentrations, and potentially H2S production, relatively constant by oxidizing excess cysteine to cysteine sulfonate,
which then becomes sulfite (S2O3

2�) and hypotaurine. CBS and CSE can also be translated into the mitochondria to
take advantage of threefold higher cysteine concentrations in the matrix. Cysteine aminotransferase (CAT) catalyzes
the formation of 3-mercaptopyruvate from cysteine, which then forms a persulfide with the enzyme 3-mercaptopyru-
vate sulfur transferase (3-MST) in both cytosol and mitochondria. H2S can presumably be released from 3-MST-SH by
another reductant such as thioredoxin (Trx) or dihydrolipoic acid (DHLA). D-Amino acid oxidase (DAO) in brain and
kidney peroxisomes can also generate 3-MP from d-cysteine. H2S catabolism: H2S binds to the enzyme sulfur quinone
oxidoreductase (SQR), forming a persulfide (SQRS-S), in the process transferring two electrons via a quinone into the
electron transport chain. These electrons ultimately are delivered to oxygen, and ATP is produced. In path 1, the sul-
fane sulfur is first transferred to the mobile carrier sulfite (S2O3

2�), forming thiosulfate (S2O3
2�), and then to glutathi-

one (GSH) by thiosulfate sulfur transferase (TST), forming glutathione persulfide (GS-SH). Mitochondrial sulfur
dioxygenase (ETHE1) oxidizes GS-SH to sulfite, which can then be further oxidized by sulfite oxidase (SO) to sulfate
(SO4

2�) producing electrons that are delivered to cytochrome c (Cyt c) or receive another H2S and form thiosulfate.
Pathway 2 is similar except that GSH is the initial mobile carrier and rhodanase (Rhd) catalyzes formation of thiosulfate
from sulfite and GSSH. H2S can also be regenerated from thiosulfate by endogenous reductants dihydrolipoic acid
(DHLA) and thioredoxin (Trx). An alternative oxidase (AOX) that accepts electrons from SQR but is not coupled to
ATP production is found in invertebrates.
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posed to protect cells by sustaining ATP produc-
tion (32), although direct evidence for such an
event is lacking, and fumarate availability may be
limiting. H2S toxicity also may be mitigated by
increasing mitochondrial dehydroascorbic acid
(45).

H2S and Sulfur Signaling

Numerous homeostatic functions have been pro-
posed for H2S, including cytoprotection, anti-in-
flammation, neuromodulation, and cardiovascular
function (reviewed in Refs. 14, 68, 133, 174). These
studies are based largely on the effects of exoge-
nous H2S administration or after manipulation of
H2S-metabolizing enzymes. How endogenous H2S
is regulated is unclear. H2S also has been proposed
to be an oxygen sensor (117). In this instance, it is
clear that H2S concentration can be tightly regu-
lated by the balance between constitutive H2S pro-
duction through transsulfuration and the amount
of oxygen available for its metabolism. The protec-
tive effects of H2S in a variety of models of isch-
emia (133) likely reflect a similar mode of oxygen-
dependent H2S metabolism.

Four mechanisms of H2S signaling have been
identified thus far. 1) Although supraphysiological
concentrations of H2S inhibit mitochondrial COX,
lower (and presumably physiological) concentra-
tions contribute to energy production and mito-
chondrial stability (8, 36, 101, 163). Separating
physiological from toxicological effects is an ongo-
ing difficulty. 2) Completely reduced H2S sulfur
(�2) can act as a reductant, and this appears to be
a highly specific process for certain disulfides
(170). Further identification of these disulfides and
their proximity to H2S production should greatly
enhance our understanding of H2S signaling. 3)
Dissolved H2S or HS� can coordinate with or re-
duce iron in heme proteins. This has recently been
described in a variety of complex reactions that
regulate activity of heme peroxidases, such as my-
eloperoxidase and catalase (110, 124). 4) Perhaps
the most interesting signaling mechanism is sulf-
hydration (more appropriately termed sulfura-
tion). Two-electron oxidation of either H2S or
cysteine sulfur (or a one-electron oxidation of
both) forms sulfane sulfur, S0 (168), which can
react with a variety of other sulfur atoms in pro-
teins and low molecular weight molecules to form
persulfides and polysulfides. These are described
in the following section.

Polysulfide Production and
Metabolism: the “Next Frontier”?

Evidence is accumulating that polysulfides (RSnR,
RSnH, H2Sn; n � 2) or persulfides (n � 2) may be

the actual mediators of sulfide signaling (99, 110,
122, 125). These readily interact with regulatory
protein cysteine sulfur and nitrogenous signaling
species through a variety of mechanisms and can
act as either an oxidant or a reductant (18, 38, 66,
67, 105, 111, 168, 169). It has been suggested that as
much as 25% of protein cysteines in mammalian
cells may have a sulfane sulfur associated with it
(106).

Comparatively little is known about polysulfide
metabolism in vertebrates, and most attention has
focused on its role in H2S production and subse-
quent signaling. In the canonical pathway
(FIGURE 2), cysteine metabolism by CAT and
3-MST generates the 3-MST persulfide (3-MST-S).
Addition of a reductant such as thioredoxin or
dihydrolipoic acid then releases H2S from the per-
sulfide (69, 94, 108, 176). The sulfane sulfur (S) can
also be transferred to another mobile thiol such as
cysteine, homocysteine, or glutathionine, e.g.,
3-MST-S � RSH ¡ 3-MST � RS-SH (176), and
wend its way along to less mobile protein thiols
(30, 122). Recently, Kimura’s group has shown that
H2S3 can be formed directly from 3-MP by 3-MST
and rhodanase in mammalian cells (70).

CSE and CBS catalyze the formation of a variety
of cysteine hydropolysulfides (CysSSH, CysSSSH,
and CysSSSSH) and, secondarily, polysulfides (Cys-
SSSCys, CysSSSSCys, CysSSSSSCys) from cystine
(CysSSCys) in mammalian cells (FIGURE 3A; Ref.
52). Cystine is far more prevalent than cysteine or
methionine in the oxidized extracellular environ-
ment, and it is readily transported into cells by the
cystine/glutamate antiporter, system Xc

� (11), or
possibly the sodium-coupled neutral amino acid
transporter (AT2; Ref. 52). This process can provide
substantial sulfane sulfur in an intracellular store
that may then be transferred to glutathione (GSnH
and GSnG; n � 2– 4) and act as an intracellular
reductant or intracellular signal (52). Unlike H2S,
where intracellular concentrations are expected to
be in the low nanomolar range (121), high polysulfide
concentrations can be achieved; glutathione persul-
fide has been estimated to exceed 100 	M (52).

Recycling polysulfides for H2S or energy produc-
tion has yet to be examined in vertebrates, but it
has been described in some prokaryotes, most no-
tably phototropic (green and purple) sulfur bacte-
ria (FIGURE 3B; Refs. 31, 37). Sulfur generated in
anoxigenic photosynthesis (Eq. 4) is stored in in-
tracellular or extracellular sulfur globules. Interest-
ingly, cyclization and precipitation as elemental
sulfur (S8) is inhibited, and sulfur is retained as
long (n � 3 and possibly up to n � 105), linear, and
stable polymers. These can be further oxidized or
reduced back to H2S if environmental H2S avail-
ability falls. This regeneration of H2S as an electron
donor may be the antecedent of eukaryotic sulfur
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cycling important for mitochondrial integrity or
redox signaling.

Polysulfides may have another unappreciated
link with evolution and our current concept of
both toxicity and signaling with reactive oxygen
species (ROS). Stepwise one-electron oxidation of
H2S (HS�) initially produces a thiyl radical (HS·�;
FIGURE 1C). Two of these can combine to produce
hydrogen persulfide (H2S2), which then can be ox-
idized to a persulfide radical (S2

·�) and then to
elemental sulfur (Sn). These intermediates, reactive
sulfide species (RSS), are surprisingly chemically
and biochemically similar to the ROS intermedi-
ates in one-electron reduction of oxygen
(FIGURE 3D) or one-electron oxidation of water.
However, RSS have been around since life origi-
nated and were probably very prevalent in early
anoxigenic photosynthesis. Conversely, ROS only
became an appreciable physiological problem after
oxigenic photosynthesis caused oxygen to be
formed some 600 million years ago. Hydrogen per-
oxide (H2O2) has garnered most attention as a sig-

naling ROS because of its relative stability,
membrane permeability, and ability to selectively
react with protein thiols (175). Hydrogen persulfide
(H2S2) shares many of these characteristics with
hydrogen peroxide but appears even more reac-
tive than peroxide in inactivating the lipid phos-
phatase PTEN (38). It is quite likely that some of

the perceived ROS signaling may in fact be RSS
signaling. Our laboratory (DeLeon ER, Gao Y,
Huang E, Arrif M, Arora N, Divietro A, Olson KR,
unpublished observations) recently found that a
number of methods historically used to measure

ROS, including redox-sensitive green fluorescent
protein (roGFP), 2=,7=-dihydrodichlorofluores-
cein (DCF), MitoSox Red, Amplex Red, and H2O2

amperometric electrodes, are as, or often more,
sensitive to RSS than they are to ROS. How these

findings impact our understanding of cellular
oxidants, antioxidants, and redox signaling re-
mains to be determined. Sorting this out is the
“next frontier” in sulfide biology. �

FIGURE 3. Polysulfide shuttling in mammals and green sulfur bacteria, and similarities be-
tween reactive sulfide species and reactive oxygen species
A: in mammals, cystine (CysS-SCys), abundant in plasma and extracellular fluid, is taken up by cells via the cystine/
glutamate antiporter (system Xc

�) or via the sodium-coupled neutral amino acid transporter (AT2). Cytosolic CBS
and CSE then catalyze formation of cysteine (Cys) hydrosulfides and polysulfides [CysS-S(n)H and CysS-S(n)Cys, re-
spectively], and Cys can be exchanged for glutathione (GSH or G). H2S can be regenerated from the hydrosulfides
and polysulfides by two electron reductants. Image is modified from Ref. 52 and is used with permission from Proc
Natl Acad Sci USA. B: generic mechanisms of polysulfide (PS) shuttling by phototropic green and purple sulfur
bacteria. H2S is taken up and oxidized by sulfur quinione:oxidoreductase (SQR) similar to eukaryotes, or flavocyto-
chrome c (FccAB), and ultimately stored in an intracellular (not shown) or extracellular globule as linear polysulfides
that can exceed 105 sulfur molecules. The sulfide oxidation (SOX) pathway metabolizes thiosulfate via Sox en-
zymes (SoxAXK and SoxYZ) that also form polysulfides. Stored polysulfides can be recovered during low H2S and
H2S regenerated by dissimilatory sulfide reductases (DsrL) using electrons from NADH. Image is modified from
Ref. 37 and is used with permission from Front Microbiol. C: stepwise one-electron oxidation of H2S forms the
thiyl radical (HS·�), hydrogen persulfide (H2S2), persulfide radical (S2

·�), and elmental sulfur (Sn). D: stepwise one-
electron reduction of O2 forms superoxide (O2

·�), hydrogen peoxide (H2O2), hydroxyl radical (O2
·�), and water.

Biologically important reactive oxygen species (in blue) are homologous to reactive sulfide species (in red).
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